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\ABSTRACI‘

“3=This paper investigates the computational complexity of planning the
motion of a body £ in 2-D or 3-D space, so as to avoid collision with moving obs-
tacles of known, easily computed, trajectories. Dynamic movement problems
are of fundamental importance to robotics, bit their computational complexity
has not previously been investigated.

We provide evidence that the 3-D dvnamic movement problem is intractable
even if F has only a constant number of degrees of freedom of movement. In
particular, we prove the problem is PSPACE-hard if B is given a velouity
modulus bound on its movements and is NP hard even if § has no velocity
moduius bound. where in both cases F has 6 degrees of freedom. To prove
bl mmm ama e 1w sirm cnmm o tdwmrimivm rmmadbland Af miwmarilrtinge Af A Th wivma rmaonhing urliak
LILCIC L SOMIWY MU wdSe a4 My ML JUIC WV S WL Jadddeilavanid Wi oW e IR T e

uses time to encode conifigurations {whereas previous lower bound proefs in

robotics used the system position to encode czonfigurations and so required
unbounded number of degrees of freedom).

We also investigate a natural class of dynamis problems which we call
asteroid avoidance problems : B, the object we wish to move, is a convex
polyhedrorn which is free to move by translation with bounded velocity modulus.
and the polyhedral obstacles have known translational trajectories but cannot
rotate. This problern has many applications to robot, automoebile, and aircraft
collision avoidance.'\?m‘ main pos:itive results are polynomial time algerithms
for the 2-D astercidiaveidance problem with bounded number of ovbsiacies as
well as single expcnemNjai time and n%U0%™ space algorithms fer the 3-D
asteroird avoidance probl with an unbounded number of obstacles. Our tech-
niques for solving these astdgoid aveidance problems are novel in the sense that

_they are completely unrelated-{o previous algorithms for planning movement in

the case of static obstacles.

We also give some additional pesitive resuits for various otkber dvnamic
movers problerns, and 1n particular give polynomial time algorithims for the case
in which B has no velocity bounds and the movements of obstacles are alge-
braic in space-time.
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ABSTRACT

This paper investigates the computational complexity of planning the
rmotion of a body F 1n 2-D or 3-D space, so as to avoid collision with moving obs-
tacles of known, easily computed. trajectories Dynamic movement problems
are of fundamental importance to rebotics, but their computational complexity
has not previously been investigated.

We provide evidence that the 3-D dynamic movement problem is intractable
even If B has only a constant number of degrees of freedom of movement. In
particular, we prove the problem 1s PSPACE-hard if B is given a velouty .
modulus bound on its movements and 1s NP hard even if B has no velocity
modulus bound. where 1n both cases F has 6 degrees of freedom. To prove

N T Mo vcan amm a vrvmrimirn smmtihad Af Alivmarilatiarx mf 4 Tiiwina rvaanhina whisae
LILCDC P LONINS TL e R e I R =] LALNAS LALAdN M gaav
uses time to encode confizurations (whereas previous lower bound proofs In
robotics used the system position tc encode configuratiens and so required

unbounded number of degrees of frecdom).

We also investigate a natural class of dynamic problems which we cali
asteroid avoidance problems . the object we wish to move, i1s a convex
polyhedron which is free to move by translation with bounded velccity modulus
and lhe polyhedral obstacles have known translational trajectories but cannot
rotate. This problem has manyv applications to robot, autumobile, and aircraft
collision avoidance Our main pos:tive results are polynomial time algorithms
for the 2-D asteroid avoidance problem with bounded number of obstacles as
well as single expenential time and n20%™) space algorithms for the 3-I
asterold avoldance problem with an wnvounded number of obstacles. Our tech-
niques for solving these asteroid avoidance problems are novel in the sense that
_they are completelyv uirelated to previous algorithms for planning movement in
the casc of static obstacles

We also give some additional pesitive results for various other dynamic
movers problems. and in particular give polynomial tirne algorithms for the case
in which B has no velocity bounds and the movements of obstacles are alge-
braic 1n space-time

1. INTRODUCTION =

1.1 Static Movers Problems

The static movers prablem. 1s to plan a collision-free motion of a body B 1n
2-D or 3-D space aveiding a set of obstacles stationary in space. For example. 2
may be a sofa which we «1sh to move through a room crowded with furniture, or
B may be ar articulated robot arm which we wish to move in a fixed workspacc

. ‘Retf, 79} first showed that a gen2rahzed 3-D static movers problem s
. PSPACE -hard, where B _cnssts of nolinked polyhedra. _Hoperoft, Joseph anc
" Whitesides. 82) and Hopercfl, Schearts end Shanr, 84] later proved PSPACE-

lower bounds for 2-D static movers problems. If the number of degrees of free-
dom of moticn 1s Kept cenztant then the problem has polynomial-time solutions
provided that the guvcmetiric constraints on the motion can be stated algebra.-
cally [Schwartz anc Shanir, B3b} Mcro cificient polynomial time algorithms for
various specific cases of slatic movers problems are given in ;Lozano-Pere2 and
Wesley, 79 Reif. 79 Tchwartz and Sharir, 83a.c. 8¢ Hopceroft, Joseph and White-
sides 85. Sharir and Ariel-Shefli. 85, O Dunlaing. Sharir andJap. 83. O'Dunlawns
and Yap. £5]
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! 1.2 Dynamic Movers Problems

- In this paper. we consider the problem of planning a collision-free motion of

’ a body B which is free to move within some 2-D or 3-D space S, containing

_ several obstacles which move in & along known trajectories. We require that the
\ obstacle trajectories be easily computable functions of time, and not be at all
dependent on any movement of 5. Some applications are:

(1) Robotic Collision Avoidance. B might be a robot arm which must be
moved through a workspace such as an assembly line in which various machine
parts make predictable movements.

(2) Automobile Collision Aveoidance. B is an antemabile with an antomatie
steering system which must avoid collision with other automobiles with known
trajectories on a highway.

(3) Aircraft Collision Avoidance. B i5 an aircraft which we wish to
automatic-pilot ‘hrough an airspace containing a number of aircraft and other
obstacles with known flight paths

(4) Spacecraft Nevigation. 5 might be a spacecraft which we wish to
automatically maneuver among a field of moving obstacles, such as asteroids.

Although the dynamic movers problem is fundamental to robotics, we know
of no previous work which has conmdered the computational complexity of such
problems

We can formally define a dynamic movers problem as foilows. Let 5 be an
arbitrary fixed system of moving bodies (each of which can traaslate and rotale.
and some of which may bec hinged), having overall d degrees of freedom B 1s
allowed to move within a space S which contains a collectmn of obstacles moving
in an arbitrary {but known) manner. To cope with the time-varying environment
we represent the time as an additione! parameter of the configuration of B.
Nore precis sely, we define the free conﬁgm ation spnce FP of B to consist of all
pairs [ X.t]e E@*1) where X € E9 represents a configuration of B, and such
that 1f at time { the systern B is at configuration X then K does not meet
any obstacle al that time. In this representation of FP a continuous moticn of
B is represented by a contindous arc [z; t] }‘ t) which is monctone in ¢
Note that the siope of this arc {relative to the {-axis) represents the "velocity”
{l.e . the rate of change of the parameters of the motion) of B If we impose no
resiricticns on this velocity, any such f-mcnotone path corresponds to a possi-
ble motion of 5. However, the dynamic version of the problem 15 usually further
complicated by imposing certain constraints on the allowed mctions of H One
such constraint 1s that the velocity of B has a bounded modulus {the modulus
1s the. Buchdean norm of the velecity vector) Such a constraint of a “uniform”
boundt on veiocity of B is particularly appropriate If B 15 a single rizid body
free only lo translate. most of the versions of the preblem {e g the azte-oid
avoidance problem; studied in this paper w:ll be of this kind

Using the above terminology. the problem that we wish to solve 1s Given an
iitial free configuration X¢.0] and a final free configuration X,.7]. plan & con-
tn:ous mction of B (f one exists) between these configurations which will
ave.d collision with the obstacles, or else report that no such motion is possible
\Note thzt we also specify the time 7T  at which we want to be al the final
corfigurations X, as will be sgen below, a variant of our techruques can be uscd
le ebtain minimal Lime movement of & ) In other words. we wish to find a mono-
tone patkin FP between the two configurations _X:.0] and X,.7]. where the
patn satizfies the velocity modulus bounds constraint {if :mposed)

The goal of this paper 1s to systematically investigate the complexity of

' various fundamental classes of dynamic movement planning problems
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1.3 Summary of Our Results
In summary, the main results of this paper are:

(1) PSPACE lower bounds of 3-D dynamic movement planning of a single
disk with bounded velocity and rotating obstacles.

(2) decision algorithms for 1-D, 2D or 3-D dynamic movement planning of
a polyhedron with bounded velocity and purely translating obstacles.

We also have additional results for some dynamic mocvement planmung prob- -
lems with unbounded veiocity.

1.4 Our Lower Bound Results for Rotating Cbstacics.

In the case the obstacles rotate, they may generate non-algebra.c trajec-
tories 1n space-time which appear to make movement planning intractable Our
main negative result, given in Section 2, 15 a proof that 3-D dynamic movement
planning with rotating obstacles is PSPACE -hard. even in the case the object Lo
be moved 1s a disc with bounded velccity. (We also have a related VP-hardness
result, described below. in the case B has no velocity bounds))

Remark. All previously known lower bound results for movers problems
utiiize the position of B for encoding n bits, and thus require that 2 have
in) degrees of freedom. We use substantially different techniques Jor our
lower bound results. In particular, we use time to encode the configuration of a
Tur.ng machine that we wish te simulate {therefore we call our construction a
"Lmo-maclone”). In our lower bound construction 1t suflices that £ have only
0:.) degrees of freedom (In contrast, static movement planning 1 polynamial
time dec:dable in case B has only O(i) degrees of freedom ) The key to our
PSFPACE -hardness proof 1s a "delay box" construction. which by use of rotating
rostacles generates an exponential number of disconnected ccmponents in the
free configuration space

1.5 Efficient Algerithms for Asteroid Avoidance Problems

In Section 3 we 1nvestigate an interesting class of tractable dynamic move-
ment problems where the obstacles do not rotate An asferoid avoidance prab-
lem is the dynamic movement problem where ecch of the obstacles 1s a
poivhedron with a fixed (possibly distinct) transiational veiocity and direction.
ard B 1s a convex polyhedron which may make arbitrary transiationel move-
ments but with a bounded velocity modulus Neither £ nor the obstacles may
rotate. (This problem & named after the well known ASTEROID video game
where a spacecraft of limited velocity modulus must be maneuvered to aveid
swiftly moving asteroids.) The problem is efficiently solved in the :-D case by
hne scanmng techniques but 1s guite difficult in the 2-D and 3-D cases

The assumptions of the asteroid avoidance problem are applicabie 1n mans
of the above menticned practical problems. such as robot. automobile, airpiene
and spacecraft collision avoidance problems. where both 5 and the obstacles
are approximated by convex polyhedra

The major positive results of this paper are a polynomial time algonithm for
the 2-D astermd avoldance problem with a bounded number of convex obs tacles
as well as 2% time and nC%") space decision algorithms for the 3-D
as.eroid avordance problem with an unbounded number of obsiacles The
methods we develop {such as the use of normal movements) to solve asteroid
avoidance problems are quite different from those previously used to solve
static movement problems and seem likely to be fundamental to the eflicient
soiution of cther problems in planning dynamic movement.
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We also have a simple polynomial time algorithm for the 3- D~ asteroid
avoidance problem with an unbounded number of obstacles where B has max-
imum velocity bound greater than any obstacle, and must only aveid collisicn.

1.8 Dynamic Movers Problems with no Velocity Bounds on A

In the final Section 4 of this paper, we consider the complexity of dynamic
movement planning in the case B, the object to be moved, has no velocity
modulus bounds. We first show that the 3-D dynamic movement problem for a
cylinder B with unrestricted velocity is NP-hard

We then consider algorithms for dynamic movement planning in the case in
which no velocity bounds are imposed on the motion of £. and the geometric
constraints on the possible positions nf 8 can be specified by algebraic equali-
ties and inequalities (in the parameters describing the possible degrees of free-
dom of 5 and in time ). We show that this problem is solvable in polynomial
time for any fired moving system B {which may consist of several independent

hinged translating and rotating bodies in 2-D or 3-D). ==

2. ATIME MACHINE SIMULATION OF PSPACE

We show here that
THEOREM 2.1. Dynamic imovement planning in the case of bounded velacity is

SPACE -hard, even in the case where the body B to be moved is a disc.
be a2 determinmistic Turing machine with space bound

Proof. fet M4 be a
S’n)"' o) We can assume M has tape alphabet (0.1}, state set
with initiai state 0 and accepting state 1. A

Q= to : Q l _1;

£o: Lﬁg.xratwn of M consists of a tuple C = (u.q.h) where u € {0, 135?45 the
current tape contents, ¢ € @ is the current state, and h €1, .. .. Sn) 1s
the position of the tape head. Let next {C) be the configuration immediately
succeeding C. Given input string w € §0.2{™ considered to be a binary number,
the imtial configuration1s Co = wDS\" " 0.0). We can assume (05():.0) is the
accepting configuration. We can also assume that if M accepts, then it dees so
in exactly T = 2°5() steps for some constant ¢ >0 Thus % acceptsifi Cy 1s

accepting, where (,,C,, . . Cr 15 the sequence of cenfigurations of Y satisfy-

g G, = next(L,_;) for i = 1....,T,

To simulate the computation of 4 on input w, we wiil construct & 3-D

instance of the dynamic movers problem where the body B to be moved s a
disec of radius 1. and where we bound the velocity modulus of B by
v = 100 @'S(n) Tne basic idea of our simulation 1s to use time to encode the
current configuration of M.
Let
=S{n)+ Nog @ 1+ MegSin)Hl.

We shall encode each configuration C = (1.q.h) as an NV but binary number

#'\C) S qes(n) + th(nhhcg ] i'

so 0< #.C)<2¥ A surface configuration of M 1s a triple <u,.q.h> where
_up € 10,24 1s the value of the tape cell currently scanned. g 1s the current state
and h 15 the head position Note that there are only a polynomial number of
surface configurations For each 3 € @ . h € |,
associate a distinguished position Piy ga»
corresponding to surface configuration <u,.g.h> of M.

S(njdand wu, € §0.1). we
of B 1n 3-dimens'oral space
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We will fix a distinguished initial position pg of £ n 3-dimensicnal space
B 15 located at pg at the imitial time ¢y = w. The dynamic movers problem will
be to move B so that it s at position pg also at time {7 = 25 4 T2V We will
construct a collection of meving obstacles which will forc to move to posi-
tion pg exactly at each time ¢ =w such that Tt‘ = §#C +12Y  and

R e

-

t, < It‘] + -fT Thus the lower N bits of ¢, encode the configuration ¢, and the
higher bits encode the step number. (Note that (¢ encedes the nitial
configuration, at step 0, and ¢y encodes the final configuration at step 7))

Te simulate M, we need two kinds of devices, one to test that # 1s at a par-
ticular surface configuration. and the cther to simulate one step of i at a

specific surface configuration The first kind of device is constructed as follows
To test a given bit b;. 1n position 7 of t,. we require that B be forced by a

sem:disc rotating once every —3— time units) to enter a cylindrical box {which

. s

W

we call a “test box”) with two exit slots: ezity and exit,. We design the box so
that it 1s swept by a semidisc once every 1—‘}— time units, and furthermore b, =

I u

T T R T T TR

iff exit; 15 open ff exity is closed at time lt.l + 4,. where 4; 1is the time

required by B toreach the entry slot of this test box. A sermidisc rotating once
every 2/ time units can be used to oper and close these exits at the appropriate

. ) o] .
times Thus we can design the test box so that in "~ time umts, B 1s forced to

move through eritb],

Hence (by using a balanced tree of such test boxes plus some additional
sweeping semidiscs), we can force B to be moved from p¢ to arrive in dqn.s-
tinguisned position P“n-‘?-“ 1n time at least ll‘l 1+ . and less than ||+ . + f—
Let &,y = next(() = {u'.9g".h') be the configuration of Y immediately {ollow-
ing €. Since #C., ~ #C depends only on <ux.q.h> there 13 a function
g{un.q.h) suchthat #C.y = #C + glun.g.h) and glung.h) <2 Hence we
will require an additional gadget. to be described below. to force B to move
froti position P<uh,q a> back again to position pg at time ¢4y such that

! l D 1 .
lt‘”J = #C 4+ (1+0)2" = i‘l]l + giuy.g.h) w2V,

-t 4

r———y—
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}+1-“-;—. The total time delay for this move must be

~la - N oAl B
F U gy T -

Thus our Kkey remaining construction still required 1s a "delay A box”
(where A is a number less than 22-“') If 5 enters the delay box at any time

t >0 such that ¢t < |t] + %— then B must be made to exit the delay bex at a

o — — —

Tk e lal

-
Y
»

[
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- 2 . :

;{ time at least lt] + A, and at. most lt) + &4 + = Note wa can assume A is greater
'[:,' than a constant. say 10, or else the constructien ts trivial (Qur construction s
[ not trivial, however, in the general case where A 15 exponentialin N since 1t s
= based on an explicit construction of an exponential number of disconnected
_kf components 1n the free configuration space. using only a small number of mov-
h ing (essentially rotating) obstaclies having polynomially describable velocities ) .
I -

N Our delay box consist: of a fixed torus-shaped obstacle, plus some addi-
'fj. tional moving obstacles {see Figure ). We cawn precisely define this torus as the
{,-: surface generated by the revoiution of an {imaginary) circle of radius 3 around
) the z axis, so that its center 1s always at distance g—;—:—-from the z aws. and so




respectively, just sufficiently wide for entrance and e:it of disc B from the
torus. The idea of our delay bcx construction will be to create various discon-
nected "free spaces” within the torus in which B must be located. These free
spaces will be constructed so that they move within the toruis w radians of @
(i.,e., make :/2 a revolution) in A time units. Once F enters the torus via
the entrance slot, cur construction will o1 e B to be located in exactly one
such free space, and revolve with il around the torus until £ leaves the interior
of the torus at the exit slot after the required delay of A time units.

We now show precisely how to create these moving "free spaces”. A moving
obslacle D moves through the interier of the torus with angular velocity (with

respect to 8) of 16 + Elg-revoluuons per time unit. D consists of three discs
Dy.D, D, placed face to face so that their centers are nearly 1n contact and so
! that they are each coplanar with the =z-axis. Dises Do 0,.D; are of radius
' almost 3. Uy has a 1/ 4 section removed, D, has a 3/ 4 section removed, and J;
has a 1/2 section renioved. D; and D, each rotate around their center, but
Dy does not. Let ¥, be the angular displacement of D, as it rotates around its
center, for i=1,2. We set the angular velocity of I, with respect to ¥, to be the
same as the angular velocity of D; with respect to 8. We set the angular velo-
city of ), with respect to ¥, to be 32A revolutions per time unit (see Figure
2).
3w

We assume that when DU has angular displacement @ = = D, :s posi-

tioned so that the remaining solid quarter section of D, completely overlaps the
removed quarter section of Dy This creates an immobile "dead space” at

Q= 92—"- every roughly Tla—time units. which B cannot rcross {because its velo-
city i1s too small), and will force & (1f 1t 1s tec avoid collision) to exit the torus via
the exit slot at ® = m. However, while D has angular displacement 0,

0= 0 =< the removed 3/4 section of D, complately overlaps the rernsved
quarter section of Dy which thereiore remains completely unobscured (see Fig-
ure 3).

Observe that for 0= @< a "free space” is created during about /2
revelution of D, around its center {1 e. when the removed quarter section of Dy
and the removed half-section of /7, snfficiently averlan to acecmmedats B
between them), and B can be located 1n this free space without contacting an
obstacie On the next roughly i/2 revolution of /' around 'ts center, a "dead
i _space” is created (Le.. when the removed sections of dises Dg D; dc not
sufficiently cverlap). and B cannot be located in this dead space Since D,
rotates around its center at most 248 tiumes every tume interval in which D
rotates through the torus. at most 24 such free spaces are nreated during one
revolution of 2 around the torus {see Figure 4).

-7-
- that the circle 1s always coplanar with the x-axis. Let @ be the angular posi-
tion of a point with respect to rotation around the z-axis.
The torus will have open entrance and erxif slots at 8§ =0 and O = =,
i

1 ) _
Since D makes an integal nuinber plus oA revolutions vi @ every time

unit, each free space moves 5—‘—-— revolutions of @ e.-ry time unit, and thus

our construction. Moreover we have chosen the size of the torus and A= 0. so
that it 1s easy to verify that the maximum velocity v of B 15 sufficient for B
to enter the torus, to move along within a free spare anc to finally exit the torus.
Finallv, we claim that B cannot move between any two distinct free spaces

|
)

[

|

|

|

|

|

|

'
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E each free space moves 1/2 a revolution of 8 1In A timne units as required in
\
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while 1n the interior of the torus If this was possible. then B cculd move

. across a dead space without colliding with D. But U makes a revolution of 9
1
at least every = time units In this time. B {which has maximum velccity

[
{-'} 16
v L.
- v) can move at most distance T which 15 less than the minimum distance
: :
7‘? g—:_—-% = ;—'—between any Lwo free spaces, a contradiction

Finally. to complete cut construction, we observe that it 1s easy {by use of a
binary tree of cylindrical tube obstacles and sweeping sermidises) to force B to
move from the exit of each such torus to pe. so that the overail delay in reach-
Ing Po 1s A, as requred. A description of the above construction can easily be
computed by an O(log n) space bounded deterministic Turing Machune. 0O

— v
R n )

L4

'.'l‘

Remark: This "time-machine” construction can be simplified further, to the
case Involving dynamic movement planning in 2-D space 1n the presence of a s.n-
gle moving obstacle which is a single point  Giving this obstacle a rather wrregu-
lar {but still polynomially describable) motion, wz can simulate both testing dev-
lces and delay devices and any additional obstacles needed to force B to move
from and back to the starting position pg. Nevertheless, we prefer the construc-
tion given here since it uses more natural and regular kinds of motion (We are
gratetul to Jack Schwartz for ma'ung this observaticn.)

SNDMT. -+ SR

T

3. EFFICIENT ALGORITHMS fOR THE ASTEROID AVOiDANCE PROBLEM

Our FPSPACE-hardness result of the previous section indicales that it may
be inherently difficult te selve ¢inamic movers problems where the obstacles
rotate. Therefore we confine our attention to the following case, which we call
the asteroid avoidance problem

Assume that B 1s an arbitrary convex polyhedron i d-space which can
move only by translating with maximum velocity modulus v but without rotat-
ing (so that its motion has only 4 translational degrees of freedom) We also
assume that each of the obstacles 1s a convex polvhedron which meves {(without
rotating) at a fixed and known velocity {which mayv vary from one obstacle to

Sy

o 3

v e "2 "x

-

——

:t}. another). Finally, we assume the obstacles never collide with each other The
:-: free conflguration space 7 (including Lime 25 an extra degree of frecdom, as
i above) 1s {(d + :)-dimensional. While the case 4 = . is easy to solve, the cases
! d =23 of the asteroid avoidance problem are quute challenging. and require

some interesting algorithmic techniques.

- We have eflicient algorithms for various asteroid avoidance problems
_ These results utilize sorne basic facts described in the next two subsections, of
» which the most important 15 that normai movement suffice.

[ 3.1 Reduction to the Hovement of a Point

Before continuing. we use the foliowing simple device {see 'Lozano-Perez
and Wesley, 79]) to reduce the problem to the case 1n which £ is a single mov-
ing point. Let B¢ denote the set of points occupied by B at time ¢ =0
Replace each moving obstacle € by the set T — B¢ (which consists of pointwise
differences of points of C and points of By) Suppose that we wish to plan an
admissible motion of B from the 1nitiai position B¢ to a final position B,. and
let X, denote the relative displacement of 8, from By Then such a motion
exists if and only If there exists an admissible motion of a single pont from the
origin to X, which avoids collision with the moving displaced bodies C — Bg
- (each such body moving with the same velecity as the obstacle body €) Since
w the displacad bodies are also convex polyhedra we have reduced the problem to

T T v
B
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a simular one 1n which B can be assumed .o be a single moving point.
Hereaftar in this section, we assume this.

3.2 Normal Movements

¥e will require some special notation for varicus types of movement of 5
over a given time interval. In all the following types of movement of F, we
allow (the point) B to touch an obstacle boundary, but do not allow it to move
to the intericr of any obstacle, and require that 8 not exceed a maximum velo-
city modulus v.

(1) A static movement is one in which B does not move (i.e., has 0 velocity)

() A direct movement 1s a movement of B with a constant velucity vectu:
{with moduwlus < v). During a direct movement, B may touch an obstacie
only at the endpoints of that movement.

(3) A contact movemen{ is a movement of B in which B moves on the boun-
dary of an obstacle C (i.e., the boundary of the region of FP induced by
the movement of C). In the 2-D asteroid avoidance problem, we alss
require that any such maximal) contact movement begin and end at (con-
tact with) vertices of an obstacle. In the 3—D asteroid avoidance problem,
we require that each contact movement begin and end only at {contact
with) edges or vertices of an obstacle.

{4) A jundamentai movement ¢! ¥ is a Zirect movement followed possibly by
a contant movement. '

(8) A mormal movement of B is a (possibiy emptv) sequence of fundamental
movementis of I where the movements must satisfy the following restric-
tions:

R1: Between any two distinct direct movements, there must be a contact move-
ment, and

R2: No two distinct (maximal) contact rnovernents are allowed to wvisit {the
boundary of) the same obstacle. ‘

Note that R! requires that a normal movement does not change its direc-
tion except while in contact with an cobstacle RR2 ensures that a,normal move-
ment consists of <& + ! tundamental movements, where k is the number of
obstacles

LEMMA 3.1. B haos a collision-free movement p(t) = [ X,.t ] from [ X;.0] to "X, T)

Yf B has n sequence of fundamental movements from X;,0] to (X7, T] satisfy-

irng K1

Proof. If B has a sequence of fundamental movements from X¢ 0] to X7, T]
». where B may possibly touch some of the obstacles, then since the obstacles
are assumed never to collide, and the initial and final positions of B are free, it
is easily seen thal by & perturbation of the given sequence of movements. one
can obtain a collisica-free movement from [X,.0] to Xy .T]

For the converse part, consider the class K of all paths p{t) = X,.t] n
space-time {from [X¢ 0] to (X7.7], whose slope at any given time 1s of modulus at
most v, and which avoids penetration into the interior of any obstacle By
assumption A is not empty Let np € A be the shortest path in X (where the
length of a path 1n K is its BEuclidean leangth in £4*1).

Observe that If 7 € K and if [X.t,], "Xpt2] € m. then the path m. obtained
by replacing the portion of m between these two points by the straight segment
jomning them (in space-tune), is such that its slope at any given time 15 = v
Since the space-time trajectory of each obstacle 1s a convex polyhedron, 1t fol-
lows, using standard shortest-path arguments, that np must be a polygoral path.
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willch consis.s of 2n aliernating seguence »f free straight segranents and of poiyg-
oihal subpaths in whichk B 5 12 contast 3.1 .0 obstacle Moreover, the vertices
of g must lie alang edges of the space-Ur.: - .rajectories of the moving obstacles,
¢n they correspond to contacts ¢f & w ‘Lh obetacle vertices Thus #ng 15 a
sequence ¢ fundumental move. ents calizfying R 0

Lrmma $.2. B has a collicion-f~ee movemer:t from "X¢.0] to X7, T]iyf B has a
ro-mal movement froon X0, lo (A7, T). .

Proof. By Lemma 3.1, we can assume F 1as a movement _X;.t] defined for
0<! =T coensisting of a sequence of fundamental movements beginning at
times s £, .. .. 8, s T sztialying Ri. ! restriction R2 15 violated then
there mu.t be times ¢, #; such [X;.t] 1sin contact with the same obstacle C
diring tumes f, ana ¢;. But since ( 13 convax, its trajectory C* in space-time
15 also convex. It is theq easy to construct a single contact path X, .t] along C*
far t, <t <t;,, suchthat X,l Xgl and X,g = X,z and such that the slope of this
path at Iny given time is of modulus < v. Repeating this process as required. we
get a nosmal mevement satisiying both Rl and R2.

The other direction follows from Lemmma 3.2.

<3 The Astervid Avoidance Probiem wilh JOne Degree of Freedom cf Movemz=nt
We will irst consider the caze of a 1-D asteroid aveidance problemn. where
v assume H is constrained to move along a fixed line {in tt. presence ot 2-D
convex polygonal obstacles which can pass through that hne) The problem is
not difticult in this case sinre £ has only one degree of freedom movement
{Neverthelcss, a brief investigation of this case will aid the reader to understand
better the techniques which we use for the more difficult cases of d =23
degrees of freedom.) Let m bLe the total number of obstacle edges Let k be
the number of obstacles. By the reduction of Section 3.1, we can assume F 152
sipgle peint.
THEOREM 3.1. The astersid avoidunce problem ran be solved in time Q{n leg n)
If B is constrained to move uniy along a I-dimensional line L.

Proof. The key observation 1s that the (spoce-time) configuralion space FF in
inis case 1s a 2-dimensional space bounded by polygonal barriers generatea by

the uniforrs motions along . of the interszetions of obstacle edges with L We B
egplicitiy construct FP using a scarcline technique. We first szrt in time E
i lag m) all vbslacie edges and vertices in the order of times w whuch they R
first intersesy L. Let thrs sorted sequence be ¢,, . .., £, {where m = O(r)) As E)
we sweep the s~an Lre across time, we niawntain fer each time § the set FF. of B
all accessible {ree confiyurations at ime ¢, and alzo a sorted list @ of the inter- G
sections of obstacle edges with [ at ture t  Suppose Xp.0] 1s the imtial

configuration of A. Initiaily FP, consis.s of the ringle paint Xg.0] in space

time, and the initial value of @ 1s easily calculated in tiae O{n log ) Induc-

tively, suppose fnr for some ¢ =0 we have constructed FFy. We represent

P, as an ordered. finite sequence of disjoint intervals 7). ... .,’,‘ of L. whose f

union is the set of all points X such that there is a collision-free movement of “

B. whose velocity modulus never exceeds v, from [Xo0) toiX.t,] Lel ¢,, be

the next time folowing ¢ that an obstacle vertex intersects L FPy =~ can
asily be constructed from FP; by observing that (1) the boundares ol cach

of the 1atervals /; expand with velocity v, and {2) an obstacle deletes any por-

tion of an interval /; that it intersects onthe line L.inoreover, thisintersection
15 itself an interval {since the cbject 1s convex) whose endpounts move with corv
stant velocities for ¢ in the interval (£;.t; ;]
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From (2) it follows that the to}al number of intervals ever inwerted by the
algor:thm into L is at most 2k = O(n). Bach step in the construction of F!—’,‘H
from FPF, can thus create a new interval in /.. change the velocity of an end-
point of such an interval already in L, and optionally also merge pairs of such
adjucent intervals into single intervals. But the overall number of such merges
cannot exceed the nurnbei of irtervals ever inserted into L, i.e. 1s at most O(n).
The total time of the algorithm is therefore U(n logn) O

3.4 A Polynomial Tiune Algorithin for the 2-D Asteroid Avoidance Problem for a
Bounded Number of Obstacies

In this subseclion, we consider the 2-D asteroid avoidance problem. The
configuration space FPF in this case is 3-dimensional. We can assume, by the :
reduction of Section 3.1, that B is a singie point. We wish to move B from
‘X0.0] to [X7.T]. The obstacles C;, ..., are k convex polvgons. Let n,
the size of the problem, be the total numnber of vertices and edges of the obsta-
cles. We will show that if_k is a constant, then we can solve the problem in

n% time.

Our hasic technique will be tc tirst consider the problem of computing the
time intervals in which single direct and contact movements can be made, and
then use a recursive method te determine the time 1ntervals in which 1t 1s possi-
ble to do normal movements.

For technical reasons, we consider the initial and final positions of /¥ to be
additional immobile "obstacles'™ €, = Xg. Ce+y = X7, each consisting of a single

vertex. Let V(C;) be the set of vertices of obstacle Cj fer j=1... .k and
let V(Cp) = §Xo} and V(Cisy) = §X7). Let V= u ViC;) be the set of all ver-
tices. Note that for each j =0, ... k41, all vertlces a € V(C;) undergo a

translational motion with the same flxed velocity vector.

We will use / to denote the set of times a certain event will occur. Let /-
denote the minimum number of disjoint intervals into which the points of /7 can
be partitioned. Clearly. / can be written using O0{'/)) inequalities We will
store the intervals of | 1n sorted order using a balanced binary tree of size
0{'I}). in which we can do 1nsertions and deletions in time O{log /.).

For cacly a.a' € V(5;). let CMa, J) bz the set of all times ¢" 2 0 for which
vertex a’ can be reached at time ! by & contact movement of B on the
boundary of € starting at vertex a at some uime ! € J.
jemma 3.5, CM, (/) can be compuled in time O i + ,Vi(,] ) anag furtner-
more UMy (1) = |7 ).

‘" Proof. There are fixed reals 0= 0, = Ap {poss:bly infimule) such that vertex a”
can be recached frem vertex a by a contact movemernt within muurnum delay 4,
and maximuin delay Ap These delay parameceters A).4; can ve easily computed
tby computing the suimn of the desay bounds required for newr-contact movement
of cach of the edges of G from a to a’) wntime O( V{(G);) Then

CMy o) =t A+ 8=t <A+t t i)
so CMg (1)1 < |71, and cau be computed withan tinee O(17, + V() )

For cach a,a" € V, lel DM, o-{!) bz the set of all time: ¢ = 0 such that ver
tex @' can be reached al time ¢ by a singrz direct moveient of B starting at
verlex e atsome ime £ €

- Teo ca'ewlate DA, (1), we consider the following suoproblem. Find the sot

Feow of all pairs ¢f e £, ¢ such that the posttron a'{t7) of a” at timme ¢ can be

recached {ror the positicn ¢ (t) ¢f o at ie ! by a mingl: direct movernent
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Yix a time t and let A(¢) denote the set of all times ¢’ such that the slope of
the motion from ‘a{t).t] to a'{t’).t’] has modulus < v. Flainly A{t) is a closed
interval {t,t;]. Consider the triangle A whose corners are w = ‘ait).t]
wy = a'(ty).t]. we = a'{ty).tz] For cach obstacle . its space-time trajectory
C,* intersects A at a convex set 4; The two tangents from w to 4; cut an interval
A;(t) off the segment w, vz A;{t) is exactlv the set of positions fa’{t').t] of &’
which are not reacheble from ‘a{t),t] by a single direct movement, due tc the
interference of £; Let /;{t) denote the projection of 4;{t) onto the f-axis The
set g ¢ 1S then

NESEN IVRAGIE

Suppose F3 o has been calculated Then
DMgqa =t 3t e, (t.)€ Faqal.

To celculate the two-dimensional set F; 4 we can use a standard technique of
sweeping & lire t = const across the tt.t)-plane Note that for each t and ;.
each 2ndpoint of /;{t) 1s determined by a specific vertex of Z;, and that, given
such a vertex v the corresponding endpoint e, (i) of /;(t) is an algebraic func-
tion in t of constant degrze. Hence the structure cf Fyqa Nt = const{ can
change during the sweeping only at points ¢ where two functions g,(#), e, {:)
overlap, or where one s»uch function has a vertical tangent, i.e. at 0{n?) points ac
most  This readily implies

Lemme 3.4: F,4 can be calculated in time O{n%ogn) and stored in C(n?)
space [urtharmore, for eGch [, 'DMy o). s\ /. + n®k. and DH, ;{I} can be
calculoted in time (] + nk

Proof: The first part follows by the sweeping techrigue meutioned above. Tle
second part follows from the foct that, as & resuit of the swesping, the t-axis iz
split into Qin”) intervals, over each one of which the combinatorial structure of
Fa o "emains constant, and consists of at most k + ! disjoint intervals. Heace,
merginy these intervals with the intervals of /, we can calculate DM, 4(/) 1n a
straightforward menner within the asserted time bound, arnd also ¢btain the
requre 1 bound on ths cemplexity of that set. O

THENRFM 3.2. 7The asterowd avoidance probierm can te salved in time
Oin%¥*+Ak) and hnee in time n%Y in the case af k = O(1) obstacles.

Proof. lmtwlly tet [{) = {t 0=t < T} and let /¥ = ¢ for eacha € v — {X¢}

Industively for some i = 0, suppose for each a € v. /J¥ is the set of times ¢

that verlex a s reachable from "X¢.U] by a {ccllision-free) movernent of A
consist.ng of <1 fundamental movernents Then for each a € V,

JN = U Diaa UY)

geV

1s the set ¢! times that vertex a’ 1s reachabie from “X¢.0] by a movement of B
consistiny of <1 fundamental movements followed by a direct movement
Hencef «” € V(C,)) then

I =y O g U)

ae¥ig)

1s the su. of imes that vertex a” 1s reachable from _X;.0] by a movement of
B contsting of = i4. fundamental movements Thus for each a € V., [f**Y is
the set of tinies vertex a is reachable by a normal movemient of 5 from
. X¢.0] By Lemuna 3 2 such a normal movement suffices So T € I,\(';”) iff there

e —
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exists a collision-free movement of F from X¢.0] to X7.T]

Lemmas 3.3 and 3.4 imp gy I < 0{n®*%) and so the i—th step takes
time O(n%n®*%k +k log(n®*%k))). Therefore. the total time is O(n%**3k).

3.5. A Decision Algorithm for the 3-D Asteroid Avoidance Problem with an
Unbounded Number of Obstacles

We next consider the 3-D asteroid avoidance problem. The configuration
space FP is in this case <4-dimensional. By the results of Section 3.1, we can
assume we wish to move a point B from 'X;.0] to “X;.T] avoiding k convex
pelyhedral obstacles C,, . . ., {,. In this case the size n of the problem is the
total number of edges of the polyhedra. We wiil show that the problem is decid-
abie.

Recall that each contact movement is required to begin and end at an obs-
tacie edge or. vertex. We will consider vach obstacle edge e = {u.v) to be
directed from u to v. If e has length L we willfor 0=y = !, let e{y) denote
tne poiat on e at distance y-L from vertex u, soc e{0)=u and e(l)=v.
Let £ =1e, ... .e,{ be the set of all obstacle ecges. Let E(Z;) CE be the set
of (directed) edges of obstacle C; for j =1,. .. k.

For technical reasons we again consider the initial and final positions of F
to be iminobile obstacles Cy =23 and Ci,, = Xr. We consider E{Cy) to con-
tain a single edge of length 0 at point Xgand E{C.,,) to contain a single edge
of length 0 al point X7

An open formula F(y,;. ....y,) inthe theory of real closed fields consists
of a logical expression containing conjunctions, disjunctions, and negations of
atomic formulas, where each atomic formula 1s an equality or inequality involv-
ing rational polynomials 1n the variables y,. ... .v%,. A {partially quantified) for-
mula 1n this theory 1s & formula of the form @y, - &Yq Fiv, -~ y,) where
a < 7. and where each & 1s an existential or a universal quantifier. Such a for-
mula will be called an a'gebraic predicate, its degree is the maxinium degree of
any polynomial within the formula, and its size 1s the number of atomic formu-
las 1t contains. We will use the following results:

LEMMA 3.5 [Collins. 73], A given formuia of the theory of real closed fields of

size 1, cnn.,tant degree. with ™ variables can be decided in deterministic time
20(r;
n .

oEMMA 3.6 [Ben-Or, ¥czen, and Reif, 84). A given formuwla of the theory of
e

real claged fields of size n constant degree and v wvarighles can be decided in
n9") space

We will first show ‘hat we can describ» by algebraic predicates the time
intervals for which fundamental movements can be made, and then use the
existential theory of real closed fields to decide the feasioility of movements
consisting of fin'te sequences of these fundamental movements. Below we fix
e,.e.. € £{C;) and 0<y.y <: Let cmi{ii y.y.A) be the predicate which
holds justif B has a contact movement along a single face of {; f{rom e,ly) to
e;(y) withdelay A (i.e the motion takes A *irne units) -

LEMMA 3.7 cm{i,i'y.y A) can be canstructed in palynomial time as an aige-
brai. predicate of size nY") with constent degree and no quantified variables.

Proof. Let face(r.i’) be the predicate that holds iff e, and e,, are both on
the same face of ¢n obstacle. Let {w, w,.w,) bethe velocity vector of obstacle
Cj- Let (ug ,u,”.us) be distance vector from e, {y) to e, {y’). where u; uy,.u;
are all hinear functions of ¥,y B will move in contact with £ with velocity vec-
tor (v;.v,.vy) with modulus
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If B moves from e,((y) to e (y) with delay A then we must have
Ve = w At u,, vy A= A+ y,, and v,0 = wd +u,;.

Solving for wv;.v, v, and substituting into v? + v? + v}, we derwe the for-
muia

rs

cm{i.iy.y .A) =

rwA+u, ? w, A+ 2 A4 2]
2 z ¥ Uy Wy Uy 2
[[2e] (2] [ ] ]

Let dm(ii'\y.y'.t.t’) be the predicate which holds just if 5 has a

(collision-free) direct movement from e,{y) at lime ¢, to e;{y’) at ume ¢
The following is proved using arguments similar to those used in Lemmia 3.4.

LEMMA 3.8 dm{i.i'y.y'.t.!) can be constructed in polynomial time as ar
algebraic predicate of size and degree n% with no quantified variables.

A\ face (ii) .

Proof. For a given set of obstacles € C{Cy, ..., G} let dm{iiyy'.t.t’) be
defined as above, except that we allow possible collisions of B with obstaclesin
1Cy. . ., Ced = C. Taen dmylii'y.y'.t.t) can easily be given as an algebraic

predicate of size n” bounding the time ¢’ to a single (possibly empty) inter-
val, whose bounds vary algebraically with t.

Inductively we can write dm = g (i.i"y.¥".t.£") as the conjuncuon of
dmye, ¢y (i.i'\y.y'.t.t") and an algebraic predicate of size n%1 restrict-
ing t outside a single {possibly empty) interval of time  Thus
dr;z.((i,i'.y,y',t,t') = dm:c,. Gl Aiyy.t.t) 1san algebraic predicate of size
n o),

Let fm{iiyy.t.t) hold I there 1s a fundamental movement of B
from e,{y) at time t to e,{y’) attime ¢'. Lemmas 3.7 and 3.8 imply

fmiiyytt)ysdm{ii vy tt)vem(iiyy . t'-t)

vIity A dm{iityy bt —A) Aem{Eti YTy A)

LEMMA 39. fm{i i yy tt) non be constructed in polyriomial time as an
algebraic predicate of size n%1), constant degree and 0(.) guantified vari-
ables.

Let miiiy.y.t.t') be the predicate that holds iff B ‘has a collision-free

movement from e;{y) at time t to ey{y’) at time t'. Note that the formula
for m(iiy.y'.t.t’) appears to require n) quantified variables. We now
show
LFMMA 3.10. m{ii.y.y .t.t) cun be constructed in polynomial time as an
algebraic predicate of size n?) with constant degree using Of{log n)
quantified variables. .
Proof. Foreach r=0,1, .. ,logn, we define mf (i iyy'.tt) to be pred-
cate that holds it B has a movement from e;(y) at time t to e. (y') attime
t' consisting of a sequence of =< 2 fundamental movements. Clearly,
m (iiyy.t.t)=s fmiiiy.y.t.t’). Wecanthendefine

mit*Y (i yy.tt)= Jiy "




A 33

ow
-

L
h. - 15 -
¥
mO iy ytt)A mOu iy y.t ) . =

4
i:; ) However. this definition, when applied recursively yields a formula of size = 2".
& A more compact definition 15 gotten by
by m"*) iy ytt)y= ity it Ya,a,0850,050ag
% ey miAae=i"Aaa=y Aa, =y Aes=t Aag=t )V
i (@1 51" ABz=1 AQ3 =Y " AQ=Y Aas=t" rag=t)]
X > m®(a,aza50a,a5a)
L
|
5 The formula mU%™) (i ¢t'y y't,t) is of size n)ogn <n% and requires e
! only 0O(log n) quantified variables. By Lemmas 3.1 and 3.2 we have
’ miiiyy.tt)smiemGiyytt) QO
Ny THEOREM 3.3. The 3-D asteroid avoidance problem can be solved in time 2",
~ or o/ .ernatively in space n%0cgn),
::{ TProof. We assume immobile obstacle edges e, ¢, such that e,{0) = X, and
5 e2(0) = Xr. Hence by Lemma 3.10, B has a collision-free movement from
I ‘Xe.0] to "X7.T] 1fm(1,2,0,0,0,T) holds.

l Since m (i,2.0,0,0.T7) has n%" size and O(log n) (\;a‘unables, we can test
= satisflability of m{1,2.0,0.0.7) by Lemma 3.5 in time 2", or alternatively by
y Ler ma 3 81n space n%een) :

;

& .

} Let wr,, be the maximum velocity modulus of any obstacle, and let v

|'_3, denote as above the maximum velocity modulus of B. The slow asteroid

[ avotdunce problem 1s a restricted 3 D asteroid avoidance problem where we

e require i, =<v, and we wish to plan an admissible m«tion of B which will
avoid collision with any of the moving obstacles within a given interval of time.

| That 1s, we do not specify a iinal desired position of B but are only interested in

i the ability of B to aveid ccllisien with slowly meoving cbstacles.

[ , : .

[. Let (' be one of the moving obstacles whose velocity 1Isw  Then the space-

[ .»’time volume swept by C 1s

rij Cr=§Y+wtt]: Y e Cut 20}

X .

E‘S where Cq is the volume occupied by € at tinie t = 0. Hence C* 1s also a con-

A vex body. Next define the shadow of C to be

0 , -

e s(O)=tXt] Viu sv Ir=0 X+rut+7]c C*

[y

ful In cther words, s{C) consists of points [X.t] such that if we proceed from

..! them at any fixed adrissible velocity, we will encounter a point on C* The

[
L
L.
[+
L.
L

|

3.6 The 3-D Asteroid Avoidance f’roblem with Slow Obstacles

intuition behind this definition is that” s(C) contains space-time positions from
which 1t 1s umpossible to escape the moving C. using any fixed admissible velo-
city The following lemma shows that we cannot escape from any of these points
under any choice of varying {(but admissible) velocity: ‘

St
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LEMMA 3.11. For each Z € s{C). any path starting et Z whose pointwise velo-
cidy remains bounded by v will hit a point in C*.

Pioof. Suppose the contrary. and let p be such a path whizh misses C*
Without loss of generality we can assume that p 1s a polygonel path (so that
along each segment of this path the velocity 1s constant). Consider the first seg-
ment of p connecting a point X,.t,] in s{C) to a point [Xt;] outside s{C),
and suppose that the velocity along this segment 1s u. In particular

X2= Xl + (tz -—tl)u.
Since [X).t,] € s{C). and since u is an admuissible velocity, there e sts a time
T (necessarlly larger than t;) such that
W.o=iX,+{T-tH)u.T]EC".
On the other hand. [Xa.tz] is not in s(C) so that, by definition. there exists
another admissible velocity ug so that the straight path pg going from _X,.f;]

at velocity ug never meets C* By the same argument used above, there also
exists a time 7¢ > t; such that

Wa=iX,+ (10—t )uere} €C* .

4

But C* 1s convex, so that the whole segment connecting #; with ¥, must be
contained in C* This however, is impossible, tecause this segment intersects
Po. a contradiction which proves cur ¢laim. 0

LEMWA 3.12. Let C; and (; be two distinct moving obstacles with velacity
modulus sv. Then s(C)) ns(C,) = ¢.

Proof. Suppose the contrary, and let Z =[X.t] be a point in s{C,) ns{Cy)
Choose any admissible velocity u, and proceed from Z at velccity u  Since
Z belongs to both shadows, it follows that there exist times T,, 72. both larger
than ¢, such that Z, =  X+u{r,~t). 1] € ¢ and Z,= X+u{T,~t) T3] € C¢
Without loss of generality assume 7, < 7,. Then by the proof ¢f Lemma 3 11 we
have Z, € s(C). But Z, is a peint on the moving C,, which implies that a
point on €, will eventually meet C, which contradicts our assumption that
the moving obstacles do not collide. ()

THEOREM 3.4. If w.,,< v and the initial position of B is not in any shadouw
s{C) then it is always possible for B to avoid collision with the moving obsta-
cles. Furthermore, if the obstacles are k polyhedra with a total of n edges,
then the required motion of B can be computed in time {n +k )% = n 00,

Proof. Let X.0] be the initial confizuration at time t. = 0.

It suffices for B to remain immobile for ¢ =0, aslong as _X;t] contacts
no obstacle shudow. Let t' =0 be the first time {if ever) that " Xc.t'] contacts
an obstacle shadow s{C). Let w be the velocity vector of C. During Lumes ¢,
l'<t <o, wegive B near-contact rnotion which remawns on the external boun-
dary of s(C) using only translation of velocity 'w  in the direction of .
Since W, s v, the velocity modulus of these movements do not cxceed v.
Thus we have established the existence of a collisicn-free movement [ X.t] for
0<t=<» Hence B can always avoid collision with any ohstacle Since the
shadows of 3-D polyhedral obstacles can be easily computed i1n pclynomial
time, the required collision-free motion can ilso be computed in polynomial
time. (.

4. DYNAMIC MOVEMENT PROBLEMS WITH UNRESTRICTED VELGCITY

Throughout the last two sections we have assumed B had a given velocity
modulus bound. Here we will allow B to hare unrestricted motion, and in
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~ particular we will impose no velocity bounds.

This case appears still intractable, as we show that the 3-D dynamic move-
ment preblem for the case B is a cylinder with unrestricted motion, 1s NP-
hard. Again this proof requires that 5 has only O(1) degrees of freedom and
we make critical use of the presence of rotating obstacles to encode time.

We will next show, in contrast with what has just been stated, that the prob-
lem is polynomial time if all the obstacle motions are algebraic in space-time,
that is the movement of B is constrained by algebraic inequalities of bounded
degrees {for example B consists of a bounded number of 3-D lLinked polyhe-
dra). and there is no bound on the velocity modulus of 5.

A

TR R

LA

T

4.1 The Case of Unrestricted Motions in the Presence ol Rotating Obstacles is

a

} NFP-hard

I.f' We will reduce the 3-satisflability problems to that of planning the motion
i of a cylindrical body B in 3-space in the presence of several rotating obsta-
R cles. A semidisc is a disc with half its interior removed so that it is bounded by

-
b

a semicircle and a line segment. Suppose that we are given an instance of 3-
satisflability invelving n Boolean variables z,, . ... Tp. With each variable =z
we associate several semidiscs [J;, of radius 1, each rotating in some plane
lying paraliel to the z—y plane at some height h,, with its center at some i
puint w, .. Foreach ¢ =1,...,n, all the semidiscs D,, rotate with the same !

angular velocity v, = :4'—5;- Thus the first set of semidiscs complete half a revo- :

4

lution in : time unit, the second set in 2 time units, and so forth. Hence, if U/
is a sufficiently small disc contained in the interior of the 2-D unit disc near its
perimeter, and if the imntial positions of the rotating semidiscs are chosen
appropriately, then after ¢ whole time units each semidisc D;, will cover the
set {U'+w,,) x $h ) If and only if the i-th binary digit of ¢ is 1. We assume
that the cross section of B has an area smaller than that of U.

Suppose that the given instance of 3-satisfiability involves p clauses,
where the m-th clause has the form Zm, ¥ Zm, ¥V 2m,. Where each 2; is either
z; or the complement of z,. We represent this clause by three semidiscs
Dm,.m Din, m D, m. ail placed on a plane at some height Ay (without touching or

A AT Y TR ]
s - AP . §

)
4

¥ v I
-y
-

! - intersecting each other), such that their centers all lie ori the y axis of this
. ¥ plane, and such that the empty half of I, . s placed imitially to the right of
'l_ b my. g

- the y-axisif 2 = Zp, . otherwise the semidisc 1s placed initially with its empty
: half to the left of the y axis. We then constract three rartuw tuiiels, all von-
N . necting scme point C,, lying between the {m~1!)-th plane and the m-th plane

——
1

A

%" just introduced, to a point Cn ., lying above the new plane FEach tunnel is cir-

:!l cular, and 1ts intersection with the plane is a sufficiently small disc lying within
}q the right half of the corresponding disc U near its highest (in y) point This
[ construction imphes that at time ¢ the body £ that we wish to move can
}-j quickly go from (G, to G, Uff the assignment of the i-th binary digit of ¢ to
[ the variable z;, foreach:1 =1, ... ,n, satisfiesthe m-th clause. It follows that
- we can move Y from an initial position Cy to a fina! G4, iff there exists a
15 time t for which the above assignment sat:sfies the given instance of the 3-
b satisiiability problem. (It is easy to add more relating discs tuct would enforce
:ﬁ B to traverse the whole system of tunnels in a very shori time that begins at an
Y integral number of time units.) This proves that

:-‘("- THEOREMR 4.1. /n the presence of rotating obstacles, dynamic motion planniny
% of a'edy B with no velocity modulus bound is NP-hard, even i~ the case where

the body B 1is a rigid cylinder.
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Remark: As in the case of the time-machine construction in Section 2, this

. construction can also be simplified te a two-dimensional dynamic movement

planning with a single moving point cbstacle, at the cost of using an iwrregular
and more complex motion of that obstacle

4.2 The Case of Unrestricted Algebraic Motions

Let 7 be an arbitrary fixed system of mowving bodies with a total of 4
degrees of freedom. Let S be a space bounded by an arbitrary collectionof
moving obstacles Let the (space-time) free configuration space FP of B be
defined as in Section ! We will assume that the problem is algebraic in the
sense that the geometric constraints on the possible free configurations of B
(l.e . the constraints defining FP) can be expressed as algebraic {over the
rationals) equalities and inequalities in the d + i parameters X.t).

Remark. Some of the motions used in the preceding lower bound proofs
are not algebraic in the above sense. The simplest such raotion is rotation of a
two-dimensicnal body about a fixed center. Indeed, suppose for simplicity that
the rotating body 1s a single point at distance r from the center of rotation
«which we assume to be the origin). Then th« curve in space-time iraced by the
rotating point i3 a helix, parametrized as \z .y .t) = {r cos wt.r sin wt,t), which
1s certainly not algebraic

To obtain a polynomial-time solution to this problem. we decompese E¢*!
into a cylindrical algebraic decomposition as proposed by Collins ‘Collins, 75]
{or Collins’ decomposition in shert; =f. Tooke and Finney. 67] for a basic
description of cell complexes) relative to the set F of polynomials appearing 1n
the definition of FP. Roughly speaking, this technique partitions E%*! into
finitely many ronnected cells, such that on each of these cells each polynomial
of P has a constant sign {zero, positive, or negative). Thus FP is the union of
a subset of these cells, and 1t is a simple matter to 1dentify those cells which are
contained in FP {we refer to such cells as free Collins cells) Moreover. by
using the modified dscomposition technique presented in {Schwartz and Sharir,
83b]. one can also compute the adjacency relationships betw®en Collins ceils
(Le. find pairs .c,.c;] of Collins ceils such that one of these cells 1s contained in
the boundary of the other). Thus any continuous path in FP can be mapped to
the sequence of free Collins cells through which it passes. and conversely, for
any such sequence of free adjacent Collins cells we can construct a continuous
patn in FFP passing through these cells in order This observation has been
used 1n Schwartz and Sharir, 83b] to reduce the continuous {static) motion
planning problem to the discrete problem of searching for an appropriate path
\ni an associated connectivily graph whose nodes are the free Collins cells, and
whese edges connect pairs of adjacent such cells.

We would like to apply the same 1deas to the dynamic problem that we wish
to solve, but we face here the additional problern that we are aillowed to consider
only t-monotone paths in FP. To overcome this difficulty, we note that the Col-
lins decomposition procedure is recursive, proceeding through one dimenston at
a time When it comes to decompose the subspace E'*! 1t has aiready decom-
posed E' inte "base” cells, and the decomposition of £'*! will be such that for
each base cell b of E' there will be constructed several "layered” cells of E**!
all projecting into b. Hence if we apply the Collins dccomposition technique in
such a way that the time axis ¢ 1s decomposed in the innermost recursive step.
it follows that each final cell ¢ (in E%*') consists of poinis X.t] whose ¢
either lies between two boundary times tg{c) < t,(c) or is constant Moreover,




“.guaranteed by the property of Collins cells noted above If ¢ < i, then con-
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¢ . ¢ a Celiins ccl of the first type, then it 1s easy to show. using induction on
‘re d.mension. that for any point _Xc.to{c)] lying on the "lower” boundary of c.
and for any point "X,.t{c)] onits "upper” boundary. there exists a continuous
menotone path through ¢ connec!ing these two points. In fact, the preceding
property also holds if one or both of these points are interior to c.

These observations suggest the following procedure.

(1) Appiy the Collins decomposition technique toc E%*! relative to the set of
polvnomials defiming FFP, so that! isthe innermost dimension to be processed
Also find the adjacency relationship between the Collins cells, using the tech-
mque described in JSchwartz and Sharir, 83b].

(2) Construct a connectivity graph CG, which is a directed graph defined as
follows: The nodes of CG are the free Collins cells. A directed edge c.c’] con-
nects two free cells ¢ and c¢' provided that (a) ¢ and ¢’ are adjacent: {b)
either ¢ and ¢’ both project onto the same base segment on the ¢t axis, or ¢
projects onto an open t segment {t¢{c).t;{c)) and c' projects onto its upper
endpoint ¢,(c). or ¢’ projects ontc an open ¢t segment (fg{c).t,{c’)) and ¢
projects onto its lower endpoint tg{ctag). Intuitively, each edge of (G
represents a cros:ing between two adjacent cells which is either stationary in
time (crossing in a direct:on orthogonal to t), or else progresses forward in
time.

(3) kuind the cells cqc; containing respectively the 1nitial and final
configurations [Xg.0]. 'X,.7] Then search for i directed path in CG from c¢ to
c;. If there exists such a path then there also exists a motion iIn FP between
the two given configurations {ana the laiter motion can be effectively con-
structed from the palhin CG), oiherwise nc such mulion exists.

To see that the procedure just described is correct, note first thatif p 1sa
continuous imotion through FP between the i1mtial and final configurations
(which we assume to cross between Collins cells only finitely many times). then
it 1s easily seen that the sequence of free cells through which p passes consti-
tutes a directed path in CC. Conversely. if p' 1s a directe¢ path in CC
hetween 2. and c¢;, then p' can be transfermed inte a continuous {menotene)
motion through FP as follows First choose for each free Collins cell, ¢ a
representative interior point "X..t.]. such that the represerntative points of all
the cells that project ocnto the same base segment ¢n the ¢ axis have the same
t value Then transform each edge c.c’] of p into a monotone pathin FP as
foliows If £, =, {1.e.. 1f the crossing from ¢ to c¢' is orthogonal to the time
axis). then connect "X_..t.1to "X... f.] by any path which is containz2d in the
union ¢ v ¢’ and on which ¢ 1s held constant, the existence of such a path 1s

nect ‘X,.t.] to _X,.t;] by a monotone path contained 1n ¢ Uc’, agan the
existence of such a path 1s guaranteed by the structure of Collins cells The
resulting path p 1s plainly continuous, 1s contained in FF and is weakly monn-
tone i1 ¢t {(Note that the crossings of the first type 1n which ¢t remains con-
stant represents extreme situations where the velocity of B is infirute. How-
ever, since p 1s continuous and FP 1s open, one can easily modify p shghtly
so as to make 1t strictly monotone 1n time.) This establishes the correctness of
our procedure.

Since the Collins decomposition is of si1ze polynomial in the number of given
polynormals and in their maximal degree {albecit doubly exponential in the
number of degrees of freedom d). and can be computed withu time of similar
polynomial complexity. it follows that.
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THEOREM 4.2. The dynamicunrestricfel version of the movers problem far a
fized moving B can be salved in the general (space-time) algebraic case in

time palynomial in the number of abstactes, tne number of parts of B. and
their mavimal algebraic degree
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Figure 1. The construction of a torus by the movement
of a circle of radius 3 around the x~axis.
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